We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function (PSF) of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. First, we introduce a model of the image formation process that incorporates this interaction, therefore capturing the main characteristics of this imaging modality. Then, we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. "Infimal convolution of data discrepancies for mixed noise removal", SIAM Journal on Imaging Sciences 10.3 (2017), 1196-1233. We establish convergence rates in a Bregman distance under a source condition for the infimal convolution fidelity and a discrepancy principle for choosing the value of the regularisation parameter. The inverse problem is solved by applying the primal-dual hybrid gradient (PDHG) algorithm in a novel way. Finally, numerical experiments performed on both simulated and real data show superior reconstruction results in comparison with other methods.
翻译:我们研究光表显微镜的变异问题,即数据因空间差异模糊以及Poisson和Gausian噪音的结合而腐蚀,光表显微镜点扩散功能的空间变异由感应表和探测目标PSF之间的相互作用决定。首先,我们引入一个图像形成过程模型,纳入这种相互作用,从而捕捉这种成像模式的主要特征。然后,我们开发一个变式模型,通过数据忠诚术语,将Poisson和Gausian噪音结合起来,该术语包括一个数据忠诚术语,该术语首先在L. Calatroni 和 al. 中引入的单一噪声对等调的点扩散功能(PSF)的异变异性。“混合噪音清除数据差异的变异性”SIM Journal oniming Science 10.3 (2017年、1196-1233年) 我们在一个来源条件下在布雷格曼距离上建立趋同率的趋同率和差异原则,用于选择正统参数的价值。反向问题通过在新Galimal-Graimal imal imal imal imalimalisalisal imalbal(在模拟模拟数据中进行模拟的模拟实验中采用高级的模拟模拟数据分析,解决。