Guessing Random Additive Noise Decoding (GRAND) is a family of universal decoding algorithms suitable for decoding any moderate redundancy code of any length. We establish that, through the use of list decoding, soft-input variants of GRAND can replace the Chase algorithm as the component decoder in the turbo decoding of product codes. In addition to being able to decode arbitrary product codes, rather than just those with dedicated hard-input component code decoders, results show that ORBGRAND achieves a coding gain of up to 0.7dB over the Chase algorithm with same list size.
翻译:猜测随机添加噪声解码(GRAND)是一个通用解码算法体系,适合解码任何长度的中度冗余代码。 我们确定,通过使用列表解码,GRAND的软输入变体可以取代大通算法,在产品代码的涡轮解码中作为部件解码器。 除了能够解码任意产品代码,而不仅仅是那些具有专用硬输入元代码解码的编码算法之外,结果显示ORBGRAND在大通算法中实现了最多为0.7dB的编码收益,而该算法与大通算法的编码规模相同。