We discuss different cases of dissipative Hamiltonian differential-algebraic equations and the linear algebraic systems that arise in their linearization or discretization. For each case we give examples from practical applications. An important feature of the linear algebraic systems is that the (non-Hermitian) system matrix has a positive definite or semidefinite Hermitian part. In the positive definite case we can solve the linear algebraic systems iteratively by Krylov subspace methods based on efficient three-term recurrences. We illustrate the performance of these iterative methods on several examples. The semidefinite case can be challenging and requires additional techniques to deal with "singular part", while the "positive definite part" can still be treated with the three-term recurrence methods.


翻译:我们讨论在线性化或离散化过程中产生的汉密尔顿差分代数方程式和线性代数系统的不同消散案例。 我们为每个案例提供实际应用的实例。 线性代数系统的一个重要特征是( 非赫米提亚) 系统矩阵具有正确定或半限定的Hermitian 部分。 在肯定的案例中, 我们可以通过基于高效的三期重复的Krylov 子空间方法来迭接解决线性代数系统。 我们用几个例子来说明这些迭代方法的性能。 半确定性体案例可能具有挑战性, 需要额外的技术来处理“ 单部分 ”, 而“ 肯定部分” 仍然可以用三期重现方法处理 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员