We discuss different cases of dissipative Hamiltonian differential-algebraic equations and the linear algebraic systems that arise in their linearization or discretization. For each case we give examples from practical applications. An important feature of the linear algebraic systems is that the (non-Hermitian) system matrix has a positive definite or semidefinite Hermitian part. In the positive definite case we can solve the linear algebraic systems iteratively by Krylov subspace methods based on efficient three-term recurrences. We illustrate the performance of these iterative methods on several examples. The semidefinite case can be challenging and requires additional techniques to deal with "singular part", while the "positive definite part" can still be treated with the three-term recurrence methods.
翻译:我们讨论在线性化或离散化过程中产生的汉密尔顿差分代数方程式和线性代数系统的不同消散案例。 我们为每个案例提供实际应用的实例。 线性代数系统的一个重要特征是( 非赫米提亚) 系统矩阵具有正确定或半限定的Hermitian 部分。 在肯定的案例中, 我们可以通过基于高效的三期重复的Krylov 子空间方法来迭接解决线性代数系统。 我们用几个例子来说明这些迭代方法的性能。 半确定性体案例可能具有挑战性, 需要额外的技术来处理“ 单部分 ”, 而“ 肯定部分” 仍然可以用三期重现方法处理 。