Machine learning has begun to play a central role in many applications. A multitude of these applications typically also involve datasets that are distributed across multiple computing devices/machines due to either design constraints (e.g., multiagent systems) or computational/privacy reasons (e.g., learning on smartphone data). Such applications often require the learning tasks to be carried out in a decentralized fashion, in which there is no central server that is directly connected to all nodes. In real-world decentralized settings, nodes are prone to undetected failures due to malfunctioning equipment, cyberattacks, etc., which are likely to crash non-robust learning algorithms. The focus of this paper is on robustification of decentralized learning in the presence of nodes that have undergone Byzantine failures. The Byzantine failure model allows faulty nodes to arbitrarily deviate from their intended behaviors, thereby ensuring designs of the most robust of algorithms. But the study of Byzantine resilience within decentralized learning, in contrast to distributed learning, is still in its infancy. In particular, existing Byzantine-resilient decentralized learning methods either do not scale well to large-scale machine learning models, or they lack statistical convergence guarantees that help characterize their generalization errors. In this paper, a scalable, Byzantine-resilient decentralized machine learning framework termed Byzantine-resilient decentralized gradient descent (BRIDGE) is introduced. Algorithmic and statistical convergence guarantees for one variant of BRIDGE are also provided in the paper for both strongly convex problems and a class of nonconvex problems. In addition, large-scale decentralized learning experiments are used to establish that the BRIDGE framework is scalable and it delivers competitive results for Byzantine-resilient convex and nonconvex learning.


翻译:在许多应用程序中,机器学习已经开始发挥核心作用。 在现实世界的分散化环境中, 节点通常会因设备失灵、 网络攻击等而出现无法察觉的失败。 由于设计限制(如多试系统)或计算/隐私原因(如智能手机数据学习)或计算/隐私原因(如智能手机数据学习),这些应用程序通常要求以分散化的方式开展学习任务,没有直接连接所有节点的中央服务器。 在现实世界的分散化环境中, 节点还容易在多个计算机设备/机器中分布出无法察觉的失败。 这可能冲破非机器人的统计学习算盘(如多试剂系统) 。 本文的重点是在经历了拜占庭失败失败的节点时, 分散化学习任务, 从而可以任意偏离它们想要的行为, 从而确保最强的算法设计。 但是在分散化的框架中, 易分流化的递增的递增性 。 特别是, 现有的 Byzan- deal- develrial- reliversal disal disal disal disal dism 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员