The distributed dual ascent is an established algorithm to solve strongly convex multi-agent optimization problems with separable cost functions, in the presence of coupling constraints. In this paper, we study its asynchronous counterpart. Specifically, we assume that each agent only relies on the outdated information received from some neighbors. Differently from the existing randomized and dual block-coordinate schemes, we show convergence under heterogeneous delays, communication and update frequencies. Consequently, our asynchronous dual ascent algorithm can be implemented without requiring any coordination between the agents.


翻译:分布式双向升降器是一种既定的算法,在存在混合限制的情况下,用可分离的成本功能解决强烈的螺旋多试剂优化问题。在本文中,我们研究了它的非同步对应方。具体地说,我们假设每个代理商只依赖从一些邻国收到的过时信息。不同于现有的随机和双级区块协调计划,我们显示了在各种延迟、通信和更新频率下趋同。因此,我们的非同步的双向平衡算法可以在不要求代理商之间进行任何协调的情况下实施。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
22+阅读 · 2021年4月10日
【AAAI2021】基于图神经网络的文本语义匹配算法
专知会员服务
49+阅读 · 2021年1月30日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员