Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment) with noisy or incorrect retrieved texts. Although many existing methods attempt to preserve benefit and avoid detriment, they lack a theoretical explanation for RAG. The benefit and detriment in the next token prediction of RAG remain a black box that cannot be quantified or compared in an explainable manner, so existing methods are data-driven, need additional utility evaluators or post-hoc. This paper takes the first step towards providing a theory to explain and trade off the benefit and detriment in RAG. First, we model RAG as the fusion between distribution of LLMs knowledge and distribution of retrieved texts. Then, we formalize the trade-off between the value of external knowledge (benefit) and its potential risk of misleading LLMs (detriment) in next token prediction of RAG by distribution difference in this fusion. Finally, we prove that the actual effect of RAG on the token, which is the comparison between benefit and detriment, can be predicted without any training or accessing the utility of retrieval. Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks using LLMs such as OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical findings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员