In this work we consider the problem of differentially private computation of quantiles for the data, especially the highest quantiles such as maximum, but with an unbounded range for the dataset. We show that this can be done efficiently through a simple invocation of $\texttt{AboveThreshold}$, a subroutine that is iteratively called in the fundamental Sparse Vector Technique, even when there is no upper bound on the data. In particular, we show that this procedure can give more accurate and robust estimates on the highest quantiles with applications towards clipping that is essential for differentially private sum and mean estimation. In addition, we show how two invocations can handle the fully unbounded data setting. Within our study, we show that an improved analysis of $\texttt{AboveThreshold}$ can improve the privacy guarantees for the widely used Sparse Vector Technique that is of independent interest. We give a more general characterization of privacy loss for $\texttt{AboveThreshold}$ which we immediately apply to our method for improved privacy guarantees. Our algorithm only requires one $O(n)$ pass through the data, which can be unsorted, and each subsequent query takes $O(1)$ time. We empirically compare our unbounded algorithm with the state-of-the-art algorithms in the bounded setting. For inner quantiles, we find that our method often performs better on non-synthetic datasets. For the maximal quantiles, which we apply to differentially private sum computation, we find that our method performs significantly better.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月1日
Arxiv
31+阅读 · 2021年6月30日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年12月1日
Arxiv
31+阅读 · 2021年6月30日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员