This paper investigates two prominent probabilistic neural modeling paradigms: Bayesian Neural Networks (BNNs) and Mixture Density Networks (MDNs) for uncertainty-aware nonlinear regression. While BNNs incorporate epistemic uncertainty by placing prior distributions over network parameters, MDNs directly model the conditional output distribution, thereby capturing multimodal and heteroscedastic data-generating mechanisms. We present a unified theoretical and empirical framework comparing these approaches. On the theoretical side, we derive convergence rates and error bounds under H\"older smoothness conditions, showing that MDNs achieve faster Kullback-Leibler (KL) divergence convergence due to their likelihood-based nature, whereas BNNs exhibit additional approximation bias induced by variational inference. Empirically, we evaluate both architectures on synthetic nonlinear datasets and a radiographic benchmark (RSNA Pediatric Bone Age Challenge). Quantitative and qualitative results demonstrate that MDNs more effectively capture multimodal responses and adaptive uncertainty, whereas BNNs provide more interpretable epistemic uncertainty under limited data. Our findings clarify the complementary strengths of posterior-based and likelihood-based probabilistic learning, offering guidance for uncertainty-aware modeling in nonlinear systems.


翻译:本文研究了两种主流的概率神经建模范式:用于不确定性感知非线性回归的贝叶斯神经网络(BNNs)和混合密度网络(MDNs)。BNNs通过在网络参数上设置先验分布来纳入认知不确定性,而MDNs则直接对条件输出分布进行建模,从而捕捉多模态和异方差的数据生成机制。我们提出了一个统一的理论与实证框架来比较这两种方法。在理论方面,我们在Hölder光滑性条件下推导了收敛速率和误差界,表明MDNs由于其基于似然的特性,在Kullback-Leibler(KL)散度收敛上更快,而BNNs则因变分推断引入额外的近似偏差。在实证方面,我们在合成非线性数据集和一个放射影像基准(RSNA儿科骨龄挑战赛)上评估了两种架构。定量和定性结果表明,MDNs能更有效地捕捉多模态响应和自适应不确定性,而BNNs在数据有限时提供更具可解释性的认知不确定性。我们的发现阐明了基于后验和基于似然的概率学习的互补优势,为非线性系统中的不确定性感知建模提供了指导。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员