We present twelve numerical methods for evaluation of objects and concepts from Poisson geometry. We describe how each method works with examples, and explain how it is executed in code. These include methods that evaluate Hamiltonian and modular vector fields, compute the image under the coboundary and trace operators, the Lie bracket of differential 1-forms, gauge transformations, and normal forms of Lie-Poisson structures on $\mathbf{R}^{3}$. The complexity of each of our methods is calculated, and we include experimental verifications on examples in dimensions two and three.
翻译:我们从 Poisson 几何中提出了十二种用于评价对象和概念的数值方法。我们用实例描述每种方法是如何运作的,并解释其是如何在代码中执行的。这些方法包括评估汉密尔顿和模块矢量场的方法,在边界和跟踪操作器下计算图像,差异1形的利格,测量仪变换,以及Lie-Poisson结构的正常形式($\mathbf{R ⁇ 3}$)。我们计算了我们每种方法的复杂性,我们包括对第二和三维实例的实验性核查。