We present initial results in the development of a novel robot using RGBD cameras, image segmentation, and a simple teat pose estimation algorithm for automated milking. We relate on the analysis of the accuracy of different commercial RGBD cameras in realistic conditions. Although preliminary, our initial implementation shows that 2D image segmentation combined with point cloud processing can achieve repeatable millimeter-scale precision in estimating (synthetic) teat tip positions and cup attachment approach. The solution is also applicable in a cloud robotics setup, with GPU-based segmentation executed on an edge device or cloud.
翻译:我们展示了使用 RGBD 相机、 图像分割和简单茶叶构成自动挤奶估计算法开发新机器人的初步结果。 我们用现实条件下不同商用 RGBD 相机的准确性分析来分析。 尽管初步实施,但我们的初步实施表明, 2D 图像分割加上点云处理可以在估计(合成) 茶叶倾斜位置和杯托附加法中实现可重复使用的毫米精确度。 解决方案也适用于云形机器人设置, GPU 的分割法在边缘设备或云层上执行。