Probabilistic deep learning is deep learning that accounts for uncertainty, both model uncertainty and data uncertainty. It is based on the use of probabilistic models and deep neural networks. We distinguish two approaches to probabilistic deep learning: probabilistic neural networks and deep probabilistic models. The former employs deep neural networks that utilize probabilistic layers which can represent and process uncertainty; the latter uses probabilistic models that incorporate deep neural network components which capture complex non-linear stochastic relationships between the random variables. We discuss some major examples of each approach including Bayesian neural networks and mixture density networks (for probabilistic neural networks), and variational autoencoders, deep Gaussian processes and deep mixed effects models (for deep probabilistic models). TensorFlow Probability is a library for probabilistic modeling and inference which can be used for both approaches of probabilistic deep learning. We include its code examples for illustration.
翻译:概率深深深的学习是一种深层次的深层次神经网络,它反映了不确定性,包括模型不确定性和数据不确定性。它以概率模型和深神经网络为基础。我们区分了两种方法来进行概率深层次学习:概率神经网络和深度概率深的模型。前者使用利用概率层的深神经网络,这种网络可以代表并处理不确定性;后者使用包含深神经网络组件的概率模型,这种模型可以捕捉随机变量之间复杂的非线性随机性关系。我们讨论了每一种方法的一些主要实例,包括贝亚神经网络和混合密度网络(概率神经网络),以及变异自动电解器、深高斯进程和深层混合效应模型(深概率模型)。代萨罗低的概率概率是可用于概率性模型和推断的图书馆,这两种方法都可以用于概率深层学习。我们用其代码示例作为说明。