Pre-trained Transformers are challenging human performances in many natural language processing tasks. The gigantic datasets used for pre-training seem to be the key for their success on existing tasks. In this paper, we explore how a range of pre-trained natural language understanding models perform on truly novel and unexplored data, provided by classification tasks over a DarkNet corpus. Surprisingly, results show that syntactic and lexical neural networks largely outperform pre-trained Transformers. This seems to suggest that pre-trained Transformers have serious difficulties in adapting to radically novel texts.
翻译:培训前的变异器对许多自然语言处理任务中的人类性能提出了挑战。 培训前使用的巨大数据集似乎是他们成功完成现有任务的关键。 在本文中,我们探讨一系列经过培训前的自然语言理解模型如何运用由黑暗网络系统分类任务提供的真正新颖和未探索的数据。 令人惊讶的是,结果显示,合成和词汇神经网络在很大程度上优于经过培训的变异器。 这似乎表明,经过培训的变异器在适应根本上全新的文本方面有严重困难。