We present an algorithm based on the alternating direction method of multipliers (ADMM) for solving nonlinear matrix decompositions (NMD). Given an input matrix $X \in \mathbb{R}^{m \times n}$ and a factorization rank $r \ll \min(m, n)$, NMD seeks matrices $W \in \mathbb{R}^{m \times r}$ and $H \in \mathbb{R}^{r \times n}$ such that $X \approx f(WH)$, where $f$ is an element-wise nonlinear function. We evaluate our method on several representative nonlinear models: the rectified linear unit activation $f(x) = \max(0, x)$, suitable for nonnegative sparse data approximation, the component-wise square $f(x) = x^2$, applicable to probabilistic circuit representation, and the MinMax transform $f(x) = \min(b, \max(a, x))$, relevant for recommender systems. The proposed framework flexibly supports diverse loss functions, including least squares, $\ell_1$ norm, and the Kullback-Leibler divergence, and can be readily extended to other nonlinearities and metrics. We illustrate the applicability, efficiency, and adaptability of the approach on real-world datasets, highlighting its potential for a broad range of applications.


翻译:本文提出了一种基于交替方向乘子法(ADMM)的算法,用于求解非线性矩阵分解(NMD)问题。给定输入矩阵 $X \in \mathbb{R}^{m \times n}$ 和分解秩 $r \ll \min(m, n)$,NMD旨在寻找矩阵 $W \in \mathbb{R}^{m \times r}$ 和 $H \in \mathbb{R}^{r \times n}$,使得 $X \approx f(WH)$,其中 $f$ 为逐元素非线性函数。我们在几种代表性非线性模型上评估了所提方法:适用于非负稀疏数据近似的修正线性单元激活函数 $f(x) = \max(0, x)$;适用于概率电路表示的逐元素平方函数 $f(x) = x^2$;以及与推荐系统相关的MinMax变换 $f(x) = \min(b, \max(a, x))$。所提出的框架灵活支持多种损失函数,包括最小二乘法、$\ell_1$ 范数和Kullback-Leibler散度,并可轻松扩展至其他非线性函数和度量标准。我们在真实世界数据集上展示了该方法的适用性、效率和适应性,凸显了其在广泛应用领域的潜力。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员