We study the problem of computing Chamfer distance in the fully dynamic setting, where two set of points $A, B \subset \mathbb{R}^{d}$, each of size up to $n$, dynamically evolve through point insertions or deletions and the goal is to efficiently maintain an approximation to $\mathrm{dist}_{\mathrm{CH}}(A,B) = \sum_{a \in A} \min_{b \in B} \textrm{dist}(a,b)$, where $\textrm{dist}$ is a distance measure. Chamfer distance is a widely used dissimilarity metric for point clouds, with many practical applications that require repeated evaluation on dynamically changing datasets, e.g., when used as a loss function in machine learning. In this paper, we present the first dynamic algorithm for maintaining an approximation of the Chamfer distance under the $\ell_p$ norm for $p \in \{1,2 \}$. Our algorithm reduces to approximate nearest neighbor (ANN) search with little overhead. Plugging in standard ANN bounds, we obtain $(1+ε)$-approximation in $\tilde{O}(ε^{-d})$ update time and $O(1/ε)$-approximation in $\tilde{O}(d n^{ε^2} ε^{-4})$ update time. We evaluate our method on real-world datasets and demonstrate that it performs competitively against natural baselines.
翻译:我们研究了在完全动态环境下计算Chamfer距离的问题,其中两个点集 $A, B \subset \mathbb{R}^{d}$(每个点集大小最多为 $n$)通过点的插入或删除动态演化,目标是高效地维护对 $\mathrm{dist}_{\mathrm{CH}}(A,B) = \sum_{a \in A} \min_{b \in B} \textrm{dist}(a,b)$ 的近似值,其中 $\textrm{dist}$ 为距离度量。Chamfer距离是点云分析中广泛使用的相异性度量,在许多实际应用中需要对动态变化的数据集进行重复评估,例如在机器学习中作为损失函数使用时。本文首次提出了在 $\ell_p$ 范数下($p \in \{1,2 \}$)维护Chamfer距离近似值的动态算法。我们的算法可转化为近似最近邻搜索问题且额外开销极小。通过引入标准近似最近邻搜索的理论界,我们实现了 $\tilde{O}(ε^{-d})$ 更新时间的 $(1+ε)$-近似解,以及 $\tilde{O}(d n^{ε^2} ε^{-4})$ 更新时间的 $O(1/ε)$-近似解。我们在真实数据集上评估了所提方法,结果表明其性能与自然基线方法相比具有竞争力。