We show how to obfuscate pseudo-deterministic quantum circuits, assuming the quantum hardness of learning with errors (QLWE) and post-quantum virtual black-box (VBB) obfuscation for classical circuits. Given the classical description of a quantum circuit $Q$, our obfuscator outputs a quantum state $\ket{\widetilde{Q}}$ that can be used to evaluate $Q$ repeatedly on arbitrary inputs. Instantiating the VBB obfuscator for classical circuits with any candidate post-quantum indistinguishability obfuscator gives us the first candidate construction of indistinguishability obfuscation for all polynomial-size pseudo-deterministic quantum circuits. In particular, our scheme is the first candidate obfuscator for a class of circuits that is powerful enough to implement Shor's algorithm (SICOMP 1997). Our approach follows Bartusek and Malavolta (ITCS 2022), who obfuscate \emph{null} quantum circuits by obfuscating the verifier of an appropriate classical verification of quantum computation (CVQC) scheme. We go beyond null circuits by constructing a publicly-verifiable CVQC scheme for quantum \emph{partitioning} circuits, which can be used to verify the evaluation procedure of Mahadev's quantum fully-homomorphic encryption scheme (FOCS 2018). We achieve this by upgrading the one-time secure scheme of Bartusek (TCC 2021) to a fully reusable scheme, via a publicly-decodable \emph{Pauli functional commitment}, which we formally define and construct in this work. This commitment scheme, which satisfies a notion of binding against committers that can access the receiver's standard and Hadamard basis decoding functionalities, is constructed by building on techniques of Amos, Georgiou, Kiayias, and Zhandry (STOC 2020) introduced in the context of equivocal but collision-resistant hash functions.
翻译:我们展示了如何混淆伪确定性量子电路,假设学习与错误(LWE)的量子困难度和经典电路的后量子虚拟黑盒(VBB)混淆。给定量子电路$ Q $的经典描述,我们的混淆器输出一个量子状态$\ket{\widetilde{Q}}$,可用于对任意输入重复评估$Q$。将经典电路的VBB混淆器实例化为任何候选的后量子可区分性混淆器,我们得到了所有多项式大小的伪确定性量子电路的第一个候选构造的可区分性混淆。特别地,我们的方案是第一个候选混淆器,适用于足以实现Shor算法(SICOMP 1997)的一类电路。我们的方法沿用Bartusek和Malavolta(ITCS 2022)的方法,通过混淆适当的经典量子计算验证(CVQC)方案的验证器来混淆\emph{null}量子电路。我们通过构造公开可验证的量子\emph{分区}电路的CVQC方案超越了空电路,该方案可用于验证Mahadev的量子全同态加密方案(FOCS 2018)的评估过程。我们通过利用Amos、Georgiou、Kiayias和Zhandry(STOC 2020)在等价但抗冲突哈希函数的上下文中引入的技术,构造了一个公开可解码的\emph{Pauli函数承诺}来升级Bartusek(TCC 2021)的单次安全方案为完全可重用方案。这种承诺方案满足了一种绑定性质,使得访问接收器的标准和哈达码基解码功能的提交者对提交具有绑定性,我们在本文中正式定义和构造了此种承诺方案。