The ongoing advancements in network architecture design have led to remarkable achievements in deep learning across various challenging computer vision tasks. Meanwhile, the development of neural architecture search (NAS) has provided promising approaches to automating the design of network architectures for lower prediction error. Recently, the emerging application scenarios of deep learning have raised higher demands for network architectures considering multiple design criteria: number of parameters/floating-point operations, and inference latency, among others. From an optimization point of view, the NAS tasks involving multiple design criteria are intrinsically multiobjective optimization problems; hence, it is reasonable to adopt evolutionary multiobjective optimization (EMO) algorithms for tackling them. Nonetheless, there is still a clear gap confining the related research along this pathway: on the one hand, there is a lack of a general problem formulation of NAS tasks from an optimization point of view; on the other hand, there are challenges in conducting benchmark assessments of EMO algorithms on NAS tasks. To bridge the gap: (i) we formulate NAS tasks into general multi-objective optimization problems and analyze the complex characteristics from an optimization point of view; (ii) we present an end-to-end pipeline, dubbed $\texttt{EvoXBench}$, to generate benchmark test problems for EMO algorithms to run efficiently -- without the requirement of GPUs or Pytorch/Tensorflow; (iii) we instantiate two test suites comprehensively covering two datasets, seven search spaces, and three hardware devices, involving up to eight objectives. Based on the above, we validate the proposed test suites using six representative EMO algorithms and provide some empirical analyses. The code of $\texttt{EvoXBench}$ is available from $\href{https://github.com/EMI-Group/EvoXBench}{\rm{here}}$.
翻译:在计算机视觉的各种具有挑战性的任务中,网络架构设计方面的持续发展带来了显著的深度学习成就。与此同时,神经架构搜索(NAS)的发展提供了自动设计网络架构以降低预测误差的有希望的方法。近年来,深度学习的新兴应用场景对于考虑多个设计标准的网络架构提出了更高的要求:参数数目/浮点操作和推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务本质上是多目标优化问题;因此,采用进化多目标优化(EMO)算法来解决这些问题是合理的。然而,在这条路径上仍存在着明显的差距:一方面,缺乏一个从优化的角度来看NAS任务的通用问题形式化;另一方面,在NAS任务上进行基准评估的挑战性依然存在。为了弥合这一差距:(i)我们将NAS任务形式化为通用的多目标优化问题,并从优化的角度分析复杂特征;(ii)我们提出了一个端到端的流水线,称为$\texttt{EvoXBench}$,用于生成基准测试问题以便EMO算法高效地运行——无需GPU或Pytorch/Tensorflow;(iii)我们实例化了两个测试套件,全面覆盖了两个数据集、七个搜索空间和三个硬件设备,涉及最多八个目标。基于以上,我们使用六种代表性的EMO算法验证了所提出的测试套件,并进行了一些实证分析。$\texttt{EvoXBench}$的代码可从$\href{https://github.com/EMI-Group/EvoXBench}{\rm{here}}$获得。