Classical inequality curves and inequality measures are defined for distributions with finite mean value. Moreover, their empirical counterparts are not resistant to outliers. For these reasons, quantile versions of known inequality curves such as the Lorenz, Bonferroni, Zenga and $D$ curves, and quantile versions of inequality measures such as the Gini, Bonferroni, Zenga and $D$ indices have been proposed in the literature. We propose various nonparametric estimators of quantile versions of inequality curves and inequality measures, prove their consistency, and compare their accuracy in a~simulation study. We also give examples of the use of quantile versions of inequality measures in real data analysis.
翻译:暂无翻译