The ability to perform accurate prognosis of patients is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission from time-series vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction, incorporating static features of demographics, admission details and clinical summaries. The model is used to assess a patient's risk of adversity over time and provides visual justifications of its prediction based on the patient's static features and dynamic signals. Results of three case studies for predicting mortality and ICU admission show that the model outperforms all existing outcome prediction models, achieving PR-AUC of 0.891 (95$%$ CI: 0.878 - 0.969) in predicting mortality in ICU and general ward settings and 0.908 (95$%$ CI: 0.870-0.935) in predicting ICU admission.
翻译:对病人进行准确预测的能力对于积极的临床决策、知情的资源管理和个人化护理至关重要。现有的结果预测模型有低调的不经常的正面结果。我们提出了一个高度可扩展和强大的机器学习框架,以自动预测死亡率和伊斯兰法院联盟在住院后头24小时内从时间序列生命迹象和实验室结果中接收的死亡率和临床摘要所显示的逆境。堆叠的平台包括两个组成部分:(a) 不受监督的LSTM自动编码器,它学习时间序列的最佳代表性,利用它来区分与大多数模式不同的不利事件结束的较不频繁模式,以及(b) 梯度加速模型,它依靠构建的代表性来完善预测,包括人口统计、入院细节和临床摘要的静态特征。该模型用来评估病人在一段时间内发生逆境的风险,并根据病人静态特征和动态信号提供预测的直观理由。预测死亡率和伊斯兰法院联盟的三项案例研究结果显示,模型比现有所有结果预测模型都差,在0.891和0.199年的I-AUS美元总汇率中达到0.891和0.985年的CIC(0.195年的C)的I-0.19年的预测。