Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP) that becomes infeasible for shapes with high sampling density. A promising research direction is to tackle such quadratic optimization problems over binary variables with quantum annealing, which allows for some problems a more efficient search in the solution space. Unfortunately, enforcing the linear equality constraints in QAPs via a penalty significantly limits the success probability of such methods on currently available quantum hardware. To address this limitation, this paper proposes Q-Match, i.e., a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm, which allows solving problems of an order of magnitude larger than current quantum methods. It implicitly enforces the QAP constraints by updating the current estimates in a cyclic fashion. Further, Q-Match can be applied iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems. Using the latest quantum annealer, the D-Wave Advantage, we evaluate the proposed method on a subset of QAPLIB as well as on isometric shape matching problems from the FAUST dataset.
翻译:查找形状的对应信息可以被设计成NP- 硬四边形分配问题( QAP), 它对于取样密度高的形状来说是行不通的。 一个大有希望的研究方向是解决量子整流的二进制变量的二次优化问题, 这使得在解决方案空间中可以更有效地搜索某些问题。 不幸的是, 通过罚款在QAP中执行线性平等限制, 大大限制了目前可用量子硬件上这类方法的成功概率。 为解决这一限制, 本文提议了QMatch, 即由阿尔法扩展算法启发的新的QAP迭代量子方法, 它可以解决比当前量子计算法更大的数量级级问题。 它通过以循环方式更新当前估算来隐含QAP的制约。 此外, QMatch可以反复应用, 在一个精密对应的子组上, 允许我们根据现实世界的问题进行缩放。 使用最新的量子量衡算, D- Wave Advantage, 我们从一个QAAP 形状的子组上评估拟议方法, 和ASTIB的匹配问题。