Convolutional neural networks (CNNs) have led to significant improvements in tasks involving semantic segmentation of images. CNNs are vulnerable in the area of biomedical image segmentation because of distributional gap between two source and target domains with different data modalities which leads to domain shift. Domain shift makes data annotations in new modalities necessary because models must be retrained from scratch. Unsupervised domain adaptation (UDA) is proposed to adapt a model to new modalities using solely unlabeled target domain data. Common UDA algorithms require access to data points in the source domain which may not be feasible in medical imaging due to privacy concerns. In this work, we develop an algorithm for UDA in a privacy-constrained setting, where the source domain data is inaccessible. Our idea is based on encoding the information from the source samples into a prototypical distribution that is used as an intermediate distribution for aligning the target domain distribution with the source domain distribution. We demonstrate the effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic segmentation approaches on two medical image semantic segmentation datasets.
翻译:动态神经网络(CNNs)导致图像的语义分割任务有了重大改进。CNN在生物医学图像分割领域很脆弱,因为两个来源和目标领域在分布上存在差异,而两个来源和目标领域有不同的数据模式,从而导致域转移。由于模型必须从零开始重新训练,域变换使得数据说明有必要采用新模式,建议未经监督的域适应模式,仅使用未加标签的目标域域数据来适应新模式。通用 UDA 算法要求访问源域的数据点,而由于隐私问题,这些数据点在医学成像中可能不可行。在这项工作中,我们开发了一种在不受隐私限制的环境下的UDA算法,因为无法获取源域数据。我们的想法是将来源样本中的信息编码成一种原型分布法,作为将目标域分布与源域分布相匹配的中间分配法。我们通过将算法与两种医学图像断段数据集进行比较,以显示其效力。