We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. We performed a thorough evaluation of our method, supported by a new dataset of over 1,500 images and almost 100,000 tree annotations, covering eight cities, six climate zones, and three image capture years. We trained our model on data from Southern California, and achieved a precision of 73.6% and recall of 73.3% using test data from this region. We generally observed similar precision and slightly lower recall when extrapolating to other California climate zones and image capture dates. We used our method to produce a map of trees in the entire urban forest of California, and estimated the total number of urban trees in California to be about 43.5 million. Our study indicates the potential for deep learning methods to support future urban forestry studies at unprecedented scales.
翻译:我们采用一种新的深层次学习方法,利用高分辨率多光谱航空图像探测城市环境中的个别树木。我们使用进化神经网络来倒退显示个别树木位置的信任图,这些树木是使用峰值查找算法局部的。我们的方法通过探测公共和私人空间的树木提供完整的空间覆盖,并可以推广到非常大的地区。我们用一套新数据集对方法进行了彻底的评估,该数据集包括1 500多幅图像和近100 000棵树说明,覆盖8个城市、6个气候区和3个图像采集年。我们用来自南加州的数据培训了我们的模型,并用来自该地区的测试数据实现了73.6%的精确度,并用这个区域的测试数据回顾了73.3%的精确度。我们一般在推断其他加利福尼亚气候区和图像采集日期时都观察到类似的精确度和略低的回忆。我们用我们的方法制作了加利福尼亚整个城市森林的树木地图,并估计加利福尼亚城市树木总数约为4 350万。我们的研究表明,以前所未有的规模支持未来城市林业研究的深层次方法的潜力。