We propose fully-distributed algorithms for Nash equilibrium seeking in aggregative games over networks. We first consider the case where only local constraints are present and we design an algorithm combining, for each agent, (i) the projected pseudo-gradient descent and (ii) a tracking mechanism to locally reconstruct the aggregative variable. To handle coupling constraints arising in generalized settings, we propose another distributed algorithm based on (i) a recently emerged augmented primal-dual scheme and (ii) two tracking mechanisms to reconstruct, for each agent, both the aggregative variable and the coupling constraint satisfaction. Leveraging tools from singular perturbations analysis, we prove linear convergence to the Nash equilibrium for both schemes. Finally, we run extensive numerical simulations to confirm the effectiveness of our methods, also showing that they outperform the current state-of-the-art distributed equilibrium seeking algorithms.
翻译:我们提出了在网络上的隔离游戏中寻求完全分布式纳什均衡的算法。我们首先考虑只有当地存在限制的情况,我们设计了一种计算法,将每个代理商(一) 预测的假渐渐下降和(二) 当地重建聚合变量的跟踪机制结合起来。为了处理普遍环境下产生的混合制约,我们提议了另一种分布式算法,其依据是:(一) 最近出现的扩大原始双向计划,和(二) 两个跟踪机制,以重建每个代理商的聚合变量和组合制约满意度。我们从单一扰动分析中利用各种工具,证明我们两个计划都与纳什平衡的线性趋同。最后,我们进行了广泛的数字模拟,以确认我们方法的有效性,还表明它们比目前最先进的分布式平衡寻找算法要好。