We propose a black-box reduction that turns a certain reinforcement learning algorithm with optimal regret in a (near-)stationary environment into another algorithm with optimal dynamic regret in a non-stationary environment, importantly without any prior knowledge on the degree of non-stationarity. By plugging different algorithms into our black-box, we provide a list of examples showing that our approach not only recovers recent results for (contextual) multi-armed bandits achieved by very specialized algorithms, but also significantly improves the state of the art for (generalized) linear bandits, episodic MDPs, and infinite-horizon MDPs in various ways. Specifically, in most cases our algorithm achieves the optimal dynamic regret $\widetilde{\mathcal{O}}(\min\{\sqrt{LT}, \Delta^{1/3}T^{2/3}\})$ where $T$ is the number of rounds and $L$ and $\Delta$ are the number and amount of changes of the world respectively, while previous works only obtain suboptimal bounds and/or require the knowledge of $L$ and $\Delta$.


翻译:我们建议减少黑盒,在(近)静止环境中将某种最有遗憾的强化学习算法转换成另一种在非静止环境中最有动态遗憾的算法,重要的是,在不固定环境中,在事先对非静止程度没有任何了解的情况下,我们建议减少黑盒,通过将不同的算法插入我们的黑盒,我们提供了一系列例子,表明我们的方法不仅恢复了通过非常专业化的算法取得的(传统)多武装强盗的最新结果,而且还大大提高了(一般化的)线性土匪、聚变的MDP和无限偏振的MDP的先进算法。具体地说,在多数情况下,我们的算法实现了最佳的动态遗憾 $\ lobildelde tathcal{O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
80+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
16+阅读 · 2020年12月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
16+阅读 · 2020年12月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员