Content on Twitter's home timeline is selected and ordered by personalization algorithms. By consistently ranking certain content higher, these algorithms may amplify some messages while reducing the visibility of others. There's been intense public and scholarly debate about the possibility that some political groups benefit more from algorithmic amplification than others. We provide quantitative evidence from a long-running, massive-scale randomized experiment on the Twitter platform that committed a randomized control group including nearly 2M daily active accounts to a reverse-chronological content feed free of algorithmic personalization. We present two sets of findings. First, we studied Tweets by elected legislators from major political parties in 7 countries. Our results reveal a remarkably consistent trend: In 6 out of 7 countries studied, the mainstream political right enjoys higher algorithmic amplification than the mainstream political left. Consistent with this overall trend, our second set of findings studying the U.S. media landscape revealed that algorithmic amplification favours right-leaning news sources. We further looked at whether algorithms amplify far-left and far-right political groups more than moderate ones: contrary to prevailing public belief, we did not find evidence to support this hypothesis. We hope our findings will contribute to an evidence-based debate on the role personalization algorithms play in shaping political content consumption.
翻译:通过个人化算法来选择和订购Twitter家庭时间表的内容。 通过不断将某些内容排位高一些, 这些算法可以扩大某些信息, 同时降低其他人的能见度。 对于某些政治团体可能比其他政治团体更多地受益于算法放大的可能性, 公众和学术界都进行了激烈的辩论。 我们从Twitter平台上的长期、 大规模随机化实验中提供了定量证据, 该实验对一个随机化的控制组进行了随机化研究, 包括近2M 每日活性账户, 向一个没有算法个人化的反时序内容提供。 我们提出了两组调查结果。 首先, 我们研究了7个国家主要政党的当选议员们的Tweets 。 我们的结果揭示了一个非常一致的趋势: 在所研究的7个国家中,有6个国家, 主流政治权利享有比主流政治左派更高的算法放大率。 与这个总体趋势一致, 我们研究的第二组研究发现, 算法修正有利于右派新闻来源。 我们进一步考察了算法是否放大了远端和极右政治团体, 而不是适度的政治团体: 与普遍的公共信念相反, 我们发现, 我们没有找到政治证据支持个人化。