We present force characterizations of two newly developed insect-scale propulsors--one single-tailed and one double-tailed--for microrobotic swimmers that leverage fluid-structure interaction (FSI) to generate thrust. The designs of these two devices were inspired by anguilliform swimming and are driven by soft tails excited by high-work-density (HWD) actuators powered by shape-memory alloy (SMA) wires. While these propulsors have been demonstrated to be suitable for microrobotic aquatic locomotion and controllable with simple architectures for trajectory tracking in the two-dimensional (2D) space, the characteristics and magnitudes of the associated forces have not been studied systematically. In the research presented here, we adopted a theoretical framework based on the notion of reactive forces and obtained experimental data for characterization using a custom-built micro-N-resolution force sensor. We measured maximum and cycle-averaged force values with multi-test means of respectively 0.45 mN and 2.97 micro-N, for the tested single-tail propulsor. For the dual-tail propulsor, we measured maximum and cycle-averaged force values with multi-test means of 0.61 mN and 22.6 micro-N, respectively. These results represent the first measurements of the instantaneous thrust generated by insect-scale propulsors of this type and provide insights into FSI for efficient microrobotic propulsion.


翻译:本文针对两种新开发的昆虫尺度推进器——单尾型和双尾型——进行了力表征研究,这些推进器用于微机器人游泳器,利用流固耦合(FSI)产生推力。这两种装置的设计灵感来源于鳗鱼式游泳,由高功密度(HWD)驱动器驱动软尾,该驱动器由形状记忆合金(SMA)线供电。尽管这些推进器已被证明适用于微机器人水生运动,并可通过简单架构在二维(2D)空间中进行轨迹跟踪控制,但其相关力的特性和大小尚未得到系统研究。在本研究中,我们采用基于反作用力概念的理论框架,并通过定制微牛分辨率力传感器获取实验数据进行表征。对于测试的单尾推进器,我们测得的最大力和周期平均力的多测试均值分别为0.45 mN和2.97微牛。对于双尾推进器,测得的最大力和周期平均力的多测试均值分别为0.61 mN和22.6微牛。这些结果首次测量了此类昆虫尺度推进器产生的瞬时推力,并为高效微机器人推进的流固耦合机制提供了见解。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员