We introduce an integral representation of the Monge-Amp\`ere equation, which leads to a new finite difference method based upon numerical quadrature. The resulting scheme is monotone and fits immediately into existing convergence proofs for the Monge-Amp\`ere equation with either Dirichlet or optimal transport boundary conditions. The use of higher-order quadrature schemes allows for substantial reduction in the component of the error that depends on the angular resolution of the finite difference stencil. This, in turn, allows for significant improvements in both stencil width and formal truncation error. We present two different implementations of this method. The first exploits the spectral accuracy of the trapezoid rule on uniform angular discretizations to allow for computation on a nearest-neighbors finite difference stencil over a large range of grid refinements. The second uses higher-order quadrature to produce superlinear convergence while simultaneously utilizing narrower stencils than other monotone methods. Computational results are presented in two dimensions for problems of various regularity.
翻译:我们引入了蒙古-安培-安培-埃雷方程式的整体代表, 从而导致基于数字二次曲线的新的有限差异法。 由此产生的方案为单色, 并立即与蒙古- 安培- 埃尔方程式的现有趋同证明相匹配, 包括drichlet 或最佳运输边界条件。 使用较高等级的二次方程式计划可以大量减少误差的成分, 该误差取决于有限差异的角分辨率。 这反过来又允许显著改进静电宽度和正式脱轨错误。 我们提出了两种不同方法的实施方法。 第一次在统一的角离异化中利用捕捉性规则的光谱精度, 以便计算近邻的近邻定点差, 以及大范围电网改进。 第二种使用较高等级的二次方程式, 产生超线趋同, 同时使用比其他单质方法更窄的线性。 复合结果在两种常规问题的两个方面出现。