A new integer deterministic factorization algorithm, rated at arithmetic operations to $O(N^{1/6+\varepsilon})$ arithmetic operations, is presented in this note. Equivalently, given the least $(\log N)/6$ bits of a factor of the balanced integer $N = pq$, where $p$ and $q$ are primes, the algorithm factors the integer in polynomial time $O(\log(N)^c)$, with $c \geq 0$ constant, and $\varepsilon > 0$ an arbitrarily small number. It improves the current deterministic factorization algorithm, rated at arithmetic operations to $O(N^{1/5+\varepsilon})$ arithmetic operations.
翻译:在计算操作中被评为$O(N ⁇ 1/6 ⁇ varepsilon}美元)的计算算法中,新的整数确定因子算法在计算操作中被评为$O(N ⁇ 1/6 ⁇ varepsilon})$($O(N ⁇ 1/6 ⁇ ⁇ varepsilon}),在计算操作中被评为$N=pq$(美元=pq$=pq$)的一个系数中最小的$(grogN)/6比特(美元=pq$),在计算操作中被评为$O(N ⁇ 1/5 ⁇ varepsilon}美元算算法中被评为$O(o)/geq(N ⁇ )$(O})。