Aim: Spatio-temporal processes play a key role in ecology, from genes to large-scale macroecological and biogeographical processes. Existing methods studying such spatio-temporally structured data either simplify the dynamic structure or the complex interactions of ecological drivers. This paper aims to present a generic method for ecological research that allows analysing spatio-temporal patterns of biological processes at large spatial scales by including the time-varying variables that drive these dynamics. Methods: We introduce a method called relational event modelling (REM), which relies on temporal interaction dynamics, that encode sequences of relational events connecting a sender node to a recipient node at a specific point in time. We apply REM to the spread of alien species around the globe between 1880 and 2005, following accidental or deliberate introductions into geographical regions outside of their native range. In this context, a relational event represents the new occurrence of an alien species given its former distribution. Results: The application of REM to the first reported invasions of 4835 established alien species outside of their native ranges from four major taxonomic groups enables us to unravel the main drivers of the dynamics of the spread of invasive alien species. Combining the alien species first records data with other spatio-temporal information enables us to discover which factors have been responsible for the spread of species across the globe. Besides the usual drivers of species invasions, such as trade, land use and climatic conditions, we also find evidence for species-interconnectedness in alien species spread. Conclusions: REM offer the capacity to account for the temporal sequences of ecological events such as biological invasions and to investigate how relationships between these events and potential drivers change over time.


翻译:目标: 从基因到大规模宏观生态和生物地理过程,时空过程在生态学中发挥着关键作用。 研究这种时空结构数据的现有方法要么简化动态结构,要么简化生态驱动因素的复杂互动。 本文的目的是提出一种通用的生态研究方法,以便分析大规模空间生物过程的时空模式,包括驱动这些动态的时空变量。 方法: 我们采用了一种称为关联事件模型的方法,它依赖于时间互动动态,将连接发送节点到特定时间接收驱动因素节点的关联事件序列编码起来。 我们采用REM来研究1880年至2005年期间全球外来物种在意外或故意进入其本地范围以外的地理区域之后的蔓延情况。 在此背景下,一个关联事件代表了外来物种因其先前分布而出现的新现象。 结果:REM用于首次报告的4835个既定外来物种的入侵,从四个主要分类组将发送节点连接到接收者节点之间的关系序列。 我们利用REM来分析外来物种在1880年至2005年期间的传播情况, 使外部物种的主要驱动因素得以在外部物种贸易中传播。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员