We propose a recursive lattice reduction framework for finding short non-zero vectors or dense sublattices of a lattice. The framework works by recursively searching for dense sublattices of dense sublattices (or their duals) with progressively lower rank. When the procedure encounters a recursive call on a lattice $L$ with relatively low rank, we simply use a known algorithm to find a shortest non-zero vector in $L$. This new framework is complementary to basis reduction algorithms, which similarly work to reduce an $n$-dimensional lattice problem with some approximation factor $\gamma$ to a lower-dimensional exact lattice problem in some lower dimension $k$, with a tradeoff between $\gamma$, $n$, and $k$. Our framework provides an alternative and arguably simpler perspective. For example, our algorithms can be described at a high level without explicitly referencing any specific basis of the lattice, the Gram-Schmidt orthogonalization, or even projection (though, of course, concrete implementations of algorithms in this framework will likely make use of such things). We present a number of instantiations of our framework. Our main concrete result is an efficient reduction that matches the tradeoff achieved by the best-known basis reduction algorithms. This reduction also can be used to find dense sublattices with any rank $\ell$ satisfying $\min\{\ell,n-\ell\} \leq n-k+1$, using only an oracle for SVP in $k$ dimensions, with slightly better parameters than what was known using basis reduction. We also show a simple reduction with the same tradeoff for finding short vectors in quasipolynomial time, and a reduction from finding dense sublattices of a high-dimensional lattice to this problem in lower dimension. Finally, we present an automated search procedure that finds algorithms in this framework that (provably) achieve better approximations with fewer oracle calls.
翻译:暂无翻译