Genome sequence analysis plays a pivotal role in enabling many medical and scientific advancements in personalized medicine, outbreak tracing, and forensics. However, the analysis of genome sequencing data is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems. In this dissertation, we propose four major works, where we characterize the real-system behavior of the genome sequence analysis pipeline and its associated tools, expose the bottlenecks and tradeoffs, and co-design fast and efficient algorithms along with scalable and energy-efficient customized hardware accelerators for the key bottlenecks to enable faster genome sequence analysis. First, we comprehensively analyze the tools in the genome assembly pipeline for long reads in multiple dimensions, uncovering bottlenecks and tradeoffs that different combinations of tools and different underlying systems lead to. Second, we propose GenASM, an acceleration framework that builds upon bitvector-based approximate string matching to accelerate multiple steps of the genome sequence analysis pipeline. We co-design our highly-parallel, scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators. Third, we implement an FPGA-based prototype for GenASM, where state-of-the-art 3D-stacked memory offers high memory bandwidth and FPGA resources offer high parallelism. Fourth, we propose SeGraM, the first hardware acceleration framework for sequence-to-graph mapping and alignment. We co-design algorithms and accelerators for memory-efficient minimizer-based seeding and bitvector-based, highly-parallel sequence-to-graph alignment. Overall, we demonstrate that genome sequence analysis can be accelerated by co-designing scalable and energy-efficient customized accelerators along with efficient algorithms for the key steps of genome sequence analysis.


翻译:基因组序列分析在个人化医学、疾病追踪和法证学方面的许多医学和科学进步中发挥着关键作用。然而,对基因组序列数据的分析目前受到现有系统的计算力和记忆带宽限制的制约。在这份论文中,我们提出了四大工程,其中我们描述基因组序列分析管道及其相关工具的实际系统行为,暴露瓶颈和取舍,并共同设计快速高效的算法,同时为关键瓶颈进行可升级和节能的定制硬件加速器,以便能够进行更快的基因组序列分析。首先,我们全面分析基因组组组组组组装管道中的工具,从多个层面进行长期分析,发现各种工具的不同组合和不同基础系统导致的瓶颈和交替。第二,我们建议GenASM,一个加速框架,它建立在以比特数为基础的近距离连接,以加快基因组序列分析管道的多个步骤。我们共同设计了我们高距离、可缩缩放和记忆-节能的直流-直径比值的计算器,我们用低功率和节调调高频-直径-直径解-直径-直径解-直径解-直径解-直径-直径解-直径解-直径解-直径解-直图-直径解-直图-直图-直图-直图-直径解-直-直-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直-直-直-直-直-直图-直图-直图-直-直图-直图-直图-直图-直图-直-直-直-直-直-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-直图-

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
专知会员服务
22+阅读 · 2021年9月20日
机器学习组合优化
专知会员服务
107+阅读 · 2021年2月16日
专知会员服务
60+阅读 · 2020年3月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年9月20日
机器学习组合优化
专知会员服务
107+阅读 · 2021年2月16日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员