A novel static algorithm is proposed for numerical reparametrization of periodic planar curves. The method identifies a monitor function of the arclength variable with the true curvature of an open planar curve and considers a simple interpolation between the object and the unit circle at the curvature level. Since a convenient formula is known for tangential velocity that maintains the equidistribution rule with curvature-type monitor functions, the strategy enables to compute the correspondence between the arclength and another spatial variable by evolving the interpolated curve. With a certain normalization, velocity information in the motion is obtained with spectral accuracy while the resulting parametrization remains unchanged. Then, the algorithm extracts a refined representation of the input curve by sampling its arclength parametrization whose Fourier coefficients are directly accessed through a simple change of variables. As a validation, improvements to spatial resolution are evaluated by approximating the invariant coefficients from downsampled data and observing faster global convergence to the original shape.
翻译:用于定期平流曲线数字再平衡的新型静态算法。 方法可以辨别弧长变量的显示功能, 以及开放式平流曲线的真正曲度, 并考虑对象和曲线水平单位圆之间的简单内插。 由于以正向速度来知道一种方便的公式, 以曲线型监视器功能来维持正向分布规则, 战略能够通过进化内推曲线来计算弧长和另一个空间变量之间的对应关系。 随着某种正常化, 运动中的速度信息以光谱精确度获得, 而由此产生的对称化则保持不变。 然后, 算法通过取样其弧长对准曲线的精细化表达方式, 其四倍参数通过简单的变量变化直接获得。 作为验证, 空间分辨率的改进通过从下游数据中对变量变量进行对等化来评估, 并观察与原始形状的更快的全球趋同度。