In distributed applications, Brewer's CAP theorem tells us that when networks become partitioned (P), one must give up either consistency (C) or availability (A). Consistency is agreement on the values of shared variables; availability is the ability to respond to reads and writes accessing those shared variables. Availability is a real-time property whereas consistency is a logical property. We have extended the CAP theorem to relate quantitative measures of these two properties to quantitative measures of communication and computation latency (L), obtaining a relation called the CAL theorem that is linear in a max-plus algebra. This paper shows how to use the CAL theorem in various ways to help design real-time systems. We develop a methodology for systematically trading off availability and consistency in application-specific ways and to guide the system designer when putting functionality in end devices, in edge computers, or in the cloud. We build on the Lingua Franca coordination language to provide system designers with concrete analysis and design tools to make the required tradeoffs in deployable software.


翻译:在分布式应用程序中,Brewer的CAP理论告诉我们,当网络被分割(P)时,必须放弃一致性(C)或可用性(A)。一致性是就共享变量的价值达成一致;可用性是读写访问这些共享变量的能力;可用性是一种实时属性,而一致性是一种逻辑属性。我们扩展了CREwer的理论,将这两个属性的量化计量与通信和计算延时量的定量计量(L)相联系,获得一个在最大加代数中线性的CAL理论关系。本文展示了如何以各种方式使用CAL理论来帮助设计实时系统。我们开发了一种方法,以系统化方式交换可用性和一致性,并指导系统设计者在终端设备、边缘计算机或云中安装功能。我们利用Lingua Franca协调语言为系统设计师提供具体分析和设计工具,以便在可部署软件中做出必要的权衡。

0
下载
关闭预览

相关内容

CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
0+阅读 · 2023年3月12日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员