Proper allocation of law enforcement resources remains a critical issue in crime prediction and prevention that operates by characterizing spatially aggregated crime activities and a multitude of predictor variables of interest. Despite the critical nature of proper resource allocation for mental health incidents, there has been little progress in statistical modeling of the geo-spatial nature of mental health events in Little Rock, Arkansas. In this article, we provide insights into the spatial nature of mental health data from Little Rock, Arkansas between 2015 and 2018, under a supervised spatial modeling framework while extending the popular risk terrain modeling (Caplan et al., 2011, 2015; Drawve, 2016) approach. We provide evidence of spatial clustering and identify the important features influencing such heterogeneity via a spatially informed hierarchy of generalized linear models, spatial regression models and a tree based method, viz., Poisson regression, spatial Durbin error model, Manski model and Random Forest. The insights obtained from these different models are presented here along with their relative predictive performances. The inferential tools developed here can be used in a broad variety of spatial modeling contexts and have the potential to aid both law enforcement agencies and the city in properly allocating resources.
翻译:适当分配执法资源仍然是犯罪预测和预防中的一个关键问题,其运作方式是将空间汇总的犯罪活动和众多令人感兴趣的预测变量定性为犯罪预测和预防工作。尽管为心理健康事件适当分配资源具有关键性质,但在Arkansas的Little Rock心理健康事件地理空间性质的统计建模方面进展甚微。在本篇文章中,我们根据一个受监督的空间建模框架,在2015年至2018年之间对来自Litle Rock、Arganas、Arkansas的心理健康数据的空间性质进行了深入了解,同时推广了流行风险地形建模方法(Caplan等人,2011年;2015年;Draw,2016年)。我们提供了空间集群证据,并确定了影响这种异质性的重要特征,其方法是在空间建模的广泛空间建模背景下,通过具有空间知情的空间化模式、空间回归模型和以树为基础的方法,即Poisson回归、空间Durbin错误模型、Manski模型和随机森林,从这些不同模型中获得的见解及其相对预测性表现。我们提供了空间建模工具可用于广泛的空间建模,并有可能帮助执法机构和城市所有适当配置资源。