To harness the potential of noisy intermediate-scale quantum devices, it is paramount to find the best type of circuits to run hybrid quantum-classical algorithms. Key candidates are parametrized quantum circuits that can be effectively implemented on current devices. Here, we evaluate the capacity and trainability of these circuits using the geometric structure of the parameter space via the effective quantum dimension, which reveals the expressive power of circuits in general as well as of particular initialization strategies. We assess the representation power of various popular circuit types and find striking differences depending on the type of entangling gates used. Particular circuits are characterized by scaling laws in their expressiveness. We identify a transition in the quantum geometry of the parameter space, which leads to a decay of the quantum natural gradient for deep circuits. For shallow circuits, the quantum natural gradient can be orders of magnitude larger in value compared to the regular gradient; however, both of them can suffer from vanishing gradients. By tuning a fixed set of circuit parameters to randomized ones, we find a region where the circuit is expressive, but does not suffer from barren plateaus, hinting at a good way to initialize circuits. Our results enhance the understanding of parametrized quantum circuits for improving variational quantum algorithms.
翻译:为了利用杂乱的中间级量子装置的潜力,至关重要的是找到最佳类型的电路来运行混合量子古典算法。关键候选人是可在当前装置上有效运行的配成量子电路。在这里,我们通过有效的量子维度,通过参数空间的几何结构,通过有效的量子维度,评估这些电路的容量和可训练性,这揭示了一般电路的表达力,以及特定的初始化战略。我们评估了各种流行电路类型的代表力,并发现根据所使用的电门类型而出现的惊人差异。具体电路的特征是其直观性定律。我们确定了参数空间的量子几何测量方法的转变,从而导致深度电路的量自然梯度衰减。对于浅度电路而言,量自然梯度的量梯度可能比普通梯度值的数值大得多;然而,它们都可能因渐渐变的梯度而受影响。通过调整固定的电路参数到随机化的种类,我们发现一个区域,电路路路路的清晰度是直径可见的,但不会因不测高而受影响。我们最初电路路流理解的平流变化的方法将如何改进到改进。