We present a novel approach for semantically targeted adversarial attacks on Optical Flow. In such attacks the goal is to corrupt the flow predictions of a specific object category or instance. Usually, an attacker seeks to hide the adversarial perturbations in the input. However, a quick scan of the output reveals the attack. In contrast, our method helps to hide the attackers intent in the output as well. We achieve this thanks to a regularization term that encourages off-target consistency. We perform extensive tests on leading optical flow models to demonstrate the benefits of our approach in both white-box and black-box settings. Also, we demonstrate the effectiveness of our attack on subsequent tasks that depend on the optical flow.
翻译:我们提出了一种新颖的方法,用于对光流进行有生理针对性的对抗性攻击。 在这种攻击中,目标是腐蚀特定物体类别或实例的流动预测。 通常, 攻击者试图隐藏输入中的对立干扰。 但是, 快速扫描输出显示攻击。 相反, 我们的方法有助于隐藏攻击者在输出中的意图。 我们之所以做到这一点,是因为有一个正规化的术语,鼓励目标以外的一致性。 我们对主要光流模型进行广泛的测试, 以显示我们在白箱和黑箱环境中采用的方法的好处。 我们还展示了我们对取决于光流的随后任务的攻击的有效性。