Generative models on curved spaces rely on charts to map Euclidean spaces to manifolds. Exponential maps preserve geodesics but have stiff, radius-dependent Jacobians, while volume-preserving charts maintain densities but distort geodesic distances. Both approaches entangle curvature with model parameters, inflating gradient variance. In high-dimensional latent normalizing flows, the wrapped exponential prior can stretch radii far beyond the curvature scale, leading to poor test likelihoods and stiff solvers. We introduce Radial Compensation (RC), an information-geometric method that selects the base density in the tangent space so that the likelihood depends only on geodesic distance from a pole, decoupling parameter semantics from curvature. RC lets radial parameters retain their usual meaning in geodesic units, while the chart can be tuned as a numerical preconditioner. We extend RC to manifolds with known geodesic polar volume and show that RC is the only construction for geodesic-radial likelihoods with curvature-invariant Fisher information. We derive the Balanced-Exponential (bExp) chart family, balancing volume distortion and geodesic error. Under RC, all bExp settings preserve the same manifold density and Fisher information, with smaller dial values reducing gradient variance and flow cost. Empirically, RC yields stable generative models across densities, VAEs, flows on images and graphs, and protein models. RC improves likelihoods, restores clean geodesic radii, and prevents radius blow-ups in high-dimensional flows, making RC-bExp a robust default for likelihood-trained generative models on manifolds.
翻译:弯曲空间上的生成模型依赖图将欧几里得空间映射到流形。指数映射保持测地线但具有刚性、半径相关的雅可比矩阵,而保体积图保持密度但扭曲测地线距离。这两种方法均将曲率与模型参数纠缠,导致梯度方差膨胀。在高维潜在归一化流中,包裹指数先验可能使半径拉伸远超曲率尺度,导致测试似然性差和求解器刚性。我们提出径向补偿(RC),一种信息几何方法,通过在切空间中选择基础密度,使得似然性仅取决于与极点的测地线距离,从而将参数语义与曲率解耦。RC使径向参数在测地线单位中保持其通常含义,而图可作为数值预条件器进行调整。我们将RC扩展到具有已知测地线极体积的流形,并证明RC是唯一实现测地线径向似然性且具有曲率不变费雪信息的构造。我们推导出平衡指数(bExp)图族,平衡体积失真和测地线误差。在RC下,所有bExp设置保持相同的流形密度和费雪信息,较小的刻度值可降低梯度方差和流成本。经验上,RC在密度模型、变分自编码器、图像与图上的流以及蛋白质模型中均产生稳定的生成模型。RC提升似然性,恢复清晰的测地线半径,并防止高维流中的半径爆炸,使RC-bExp成为流形上似然训练的生成模型的鲁棒默认选择。