We propose a natural intrinsic extension of ridge regression from Euclidean spaces to general Riemannian manifolds for time-series prediction. Our approach combines Riemannian least-squares fitting via Bézier curves, empirical covariance on manifolds, and Mahalanobis distance regularization. A key technical contribution is an explicit formula for the gradient of the objective function using adjoint differentials, enabling efficient numerical optimization via Riemannian gradient descent. We validate our framework through synthetic spherical experiments (achieving significant error reduction over unregularized regression) and hurricane forecasting.


翻译:我们提出了一种将岭回归从欧几里得空间自然内蕴地推广到一般黎曼流形的方法,用于时间序列预测。该方法结合了基于贝塞尔曲线的黎曼最小二乘拟合、流形上的经验协方差以及马氏距离正则化。一个关键的技术贡献是利用伴随微分推导了目标函数梯度的显式公式,从而能够通过黎曼梯度下降实现高效的数值优化。我们通过合成球面实验(相比无正则化回归实现了显著的误差降低)和飓风预测验证了该框架的有效性。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
33+阅读 · 2021年6月24日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
33+阅读 · 2021年6月24日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员