We propose a natural intrinsic extension of ridge regression from Euclidean spaces to general Riemannian manifolds for time-series prediction. Our approach combines Riemannian least-squares fitting via Bézier curves, empirical covariance on manifolds, and Mahalanobis distance regularization. A key technical contribution is an explicit formula for the gradient of the objective function using adjoint differentials, enabling efficient numerical optimization via Riemannian gradient descent. We validate our framework through synthetic spherical experiments (achieving significant error reduction over unregularized regression) and hurricane forecasting.
翻译:我们提出了一种将岭回归从欧几里得空间自然内蕴地推广到一般黎曼流形的方法,用于时间序列预测。该方法结合了基于贝塞尔曲线的黎曼最小二乘拟合、流形上的经验协方差以及马氏距离正则化。一个关键的技术贡献是利用伴随微分推导了目标函数梯度的显式公式,从而能够通过黎曼梯度下降实现高效的数值优化。我们通过合成球面实验(相比无正则化回归实现了显著的误差降低)和飓风预测验证了该框架的有效性。