When brain activity is translated into commands for real applications, the potential for human capacities augmentation is promising. In this paper, EMD is used to decompose EEG signals during Imagined Speech in order to use it as a biometric marker for creating a Biometric Recognition System. For each EEG channel, the most relevant Intrinsic Mode Functions (IMFs) are decided based on the Minkowski distance, and for each IMF 4 features are computed: Instantaneous and Teager energy distribution and Higuchi and Petrosian Fractal Dimension. To test the proposed method, a dataset with 20 subjects who imagined 30 repetitions of 5 words in Spanish, is used. Four classifiers are used for this task - random forest, SVM, naive Bayes, and k-NN - and their performances are compared. The accuracy obtained (up to 0.92 using Linear SVM) after 10-folds cross-validation suggest that the proposed method based on EMD can be valuable for creating EEG-based biometrics of imagined speech for Subjects identification.


翻译:当大脑活动转化为实际应用指令时,增强人的能力的潜力是大有希望的。在本文件中,EMD被用于在想象式演讲中分解 EEG 信号,以用作生物鉴别识别系统创建的生物识别标记。对于每个 EEG 频道,最相关的内在模式函数(IMFs)是根据Minkowski 距离决定的,对于IMF 4 的每个特征都进行计算: 即时和技术能量分布以及Higuchi和Petrosian Fractal 尺寸。为了测试拟议的方法,使用了一套由20个科目组成的数据集,其中的20个科目想象到30个重复了5个西班牙语字。在这项任务中使用了4个分类器 — 随机森林、 SVM、天亮湾和 k-NNN - 及其性能被比较。在10倍交叉校验后获得的精度(使用Linear SVM 达0.92 ) 表明,基于EMD 的拟议方法对于为对象识别目的想象语音创建基于 EEG 的生物鉴别技术很有价值。

0
下载
关闭预览

相关内容

明可夫斯基距离或闵可夫斯基度量是一个度量在赋范向量空间,其可以被认为是两个的一般化欧几里德距离和曼哈顿距离。它以德国数学家Hermann Minkowski的名字命名。
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员