In this work, we initiate the study of the Minimum Circuit Size Problem (MCSP) in the quantum setting. MCSP is a problem to compute the circuit complexity of Boolean functions. It is a fascinating problem in complexity theory---its hardness is mysterious, and a better understanding of its hardness can have surprising implications to many fields in computer science. We first define and investigate the basic complexity-theoretic properties of minimum quantum circuit size problems for three natural objects: Boolean functions, unitaries, and quantum states. We show that these problems are not trivially in NP but in QCMA (or have QCMA protocols). Next, we explore the relations between the three quantum MCSPs and their variants. We discover that some reductions that are not known for classical MCSP exist for quantum MCSPs for unitaries and states, e.g., search-to-decision reduction and self-reduction. Finally, we systematically generalize results known for classical MCSP to the quantum setting (including quantum cryptography, quantum learning theory, quantum circuit lower bounds, and quantum fine-grained complexity) and also find new connections to tomography and quantum gravity. Due to the fundamental differences between classical and quantum circuits, most of our results require extra care and reveal properties and phenomena unique to the quantum setting. Our findings could be of interest for future studies, and we post several open problems for further exploration along this direction.


翻译:在这项工作中,我们开始在量子设置中研究最低电路规模问题(MCSP) 。 MCSP是计算布林函数的电路复杂性的一个问题。 这是一个复杂的理论- 它的硬性是神秘的, 更好地了解其硬性会对计算机科学的许多领域产生惊人的影响。 我们首先定义和调查三个自然对象( 布林函数、 单位和量子状态) 最小量子电量规模问题的基本复杂性理论性。 我们显示,这些问题在NP 中并非微不足道,而是在QCMA( 或有QCMA协议) 中是一个问题。 接下来,我们探讨三个量子 MSP及其变体之间的关系。 我们发现, 经典的MSP对于计算机科学领域和状态的量子 MCSP 存在一些不为人所知的减少, 例如, 搜索到决定的减少和自我缩减。 最后, 我们系统化地将经典的量子电流电流电流电量规模的已知结果( 包括量解学、 量子学习理论、 量子流下线、 量子曲线下线条条、 精度精确度等三组的变的关系。 我们的量流和直判的量流和直判的后期研究, 需要、 的量子和后期的量流和后期研究, 和后期的量子学和后期研究, 和后期研究需要的特性的特性和后期研究, 和后期研究, 和后期研究, 和后期研究, 和后期研究, 需要、 和后期研究, 和后期研究, 和后期研究,需要找到我们量子流和后期的特性的特性的特性的特性, 和后期的研究和后期研究, 和后期研究, 和后期研究, 需要和后期研究, 和后期研究,需要和后期的特性和后期研究,需要和后期研究,需要和后期研究,需要和后期研究,需要和后期的研究和后期的研究和后期的研究和后期研究, 和后期研究, 和后期的研究和后期的研究和后期的研究和后期研究, 需要和后期研究,需要和后期研究,需要和后期的研究和后期的研究和后期的研究和后期

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2017年12月12日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
2+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月1日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2017年12月12日
Top
微信扫码咨询专知VIP会员