We address the problem of computing a Steiner Arborescence on a directed hypercube, that enjoys a special connectivity structure among its node set but is exponential in $m$ size rendering traditional Steiner tree algorithms inefficient. Even though the problem was known to be NP-complete, parameterized complexity of the problem was unknown. With applications in evolutionary tree reconstruction algorithms and incremental algorithms for computing a property on multiple input graphs, any algorithm for this problem would open up new ways to study these applications. In this paper, we present the first algorithms, to the best our knowledge, that prove the problem to be fixed parameter tractable (FPT) wrt two natural parameters -- number of input terminals and penalty of the arborescence. These parameters along with the special structure of the hypercube offer different trade-offs in terms of running time tractability vs. approximation guarantees that are interestingly additive in nature. Given any directed $m$-dimensional hypercube, rooted at the zero node, and a set of input terminals $R$ that needs to be spanned by the Steiner arborescence, we prove that the problem is FPT wrt the penalty parameter $q$, by providing a randomized algorithm that computes an optimal arborescence $T$ in $O\left(q^44^{q\left(q+1\right)}+q\left|R\right|m^2\right)$ with probability at least $4^{-q}$. If we trade-off exact solution for an additive approximation one, then we can design a parameterized approximation algorithm with better running time - computing an arborescence $T$ with cost at most $OPT+(\left|R\right|-4)(q_{opt}-1)$ in time $O\left|R\right|m^2+1.2738^{q_{opt}})$. We also present a dynamic programming algorithm that computes an optimal arborescence in $O(3^{\left|R\right|}\left|R\right|m)$ time, thus proving that the problem is FPT on the parameter $\left|R\right|$.
翻译:我们解决了在定向超立方体上计算 Steiner Arborescence 的问题, 它在节点设置中拥有特殊的连接结构, 但以美元为单位, 使传统 Steiner 树算法效率低下。 尽管问题已知为NP- 完成, 但问题复杂的参数并不为人所知。 在进化树重建算法和在多个输入图中计算属性的递增算算法中, 任何这个问题的算法都将打开新的方法来研究这些应用程序。 在本文中, 我们根据我们的最佳知识, 第一次算法( 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为美元为单位, 以美元 美元为美元 的汇率计算一个问题, 。