Emotion recognition has received considerable attention from the Computer Vision community in the last 20 years. However, most of the research focused on analyzing the six basic emotions (e.g. joy, anger, surprise), with a limited work directed to other affective states. In this paper, we tackle sentimentality (strong feeling of heartwarming or nostalgia), a new emotional state that has few works in the literature, and no guideline defining its facial markers. To this end, we first collect a dataset of 4.9K videos of participants watching some sentimental and non-sentimental ads, and then we label the moments evoking sentimentality in the ads. Second, we use the ad-level labels and the facial Action Units (AUs) activation across different frames for defining some weak frame-level sentimentality labels. Third, we train a Multilayer Perceptron (MLP) using the AUs activation for sentimentality detection. Finally, we define two new ad-level metrics for evaluating our model performance. Quantitative and qualitative results show promising results for sentimentality detection. To the best of our knowledge this is the first work to address the problem of sentimentality detection.
翻译:过去20年来,计算机视觉界相当重视情感认识。然而,大部分研究侧重于分析六种基本情感(如喜悦、愤怒、惊讶),对其他感官状态只做了有限的工作。在本文中,我们处理的是情感性(强烈的感动感或怀旧感),这是一个新的情感状态,在文献中很少起作用,没有界定其面部标志的准则。为此,我们首先收集了看一些情感和非情绪广告的参与者的4.9K视频数据集,然后我们在广告中标出感伤感的时刻。第二,我们利用高级标签和面部行动股在不同框架的启动来界定一些薄弱的表情性标志。第三,我们用AUs的感应感应感,培训多层感应器(MLP),用于感应感应检测。最后,我们为评估我们的模范性表现确定了两个新的高级计量标准。定量和定性结果显示感应性检测的有希望结果。我们最了解的是,这是解决感性感应性检测问题的首项工作。