Conference paper assignment, i.e., the task of assigning paper submissions to reviewers, presents multi-faceted issues for recommender systems research. Besides the traditional goal of predicting `who likes what?', a conference management system must take into account aspects such as: reviewer capacity constraints, adequate numbers of reviews for papers, expertise modeling, conflicts of interest, and an overall distribution of assignments that balances reviewer preferences with conference objectives. Among these, issues of modeling preferences and tastes in reviewing have traditionally been studied separately from the optimization of paper-reviewer assignment. In this paper, we present an integrated study of both these aspects. First, due to the paucity of data per reviewer or per paper (relative to other recommender systems applications) we show how we can integrate multiple sources of information to learn paper-reviewer preference models. Second, our models are evaluated not just in terms of prediction accuracy but in terms of the end-assignment quality. Using a linear programming-based assignment optimization formulation, we show how our approach better explores the space of unsupplied assignments to maximize the overall affinities of papers assigned to reviewers. We demonstrate our results on real reviewer preference data from the IEEE ICDM 2007 conference.
翻译:除了预测`谁喜欢什么?'的传统目标外,会议管理系统还必须考虑到以下各方面:审查者能力限制、对文件的足够审查数量、专门知识模型、利益冲突以及兼顾审查者的偏好与会议目标的任务总体分配等。其中,对审查的优惠和品味的建模问题传统上与优化文件审查员的任务分开研究。我们在本文件中对这两个方面进行了综合研究。首先,由于每个审查者或每份文件(相对于其他建议系统应用)缺乏数据,我们展示了我们如何将多种信息来源综合起来学习文件审查者偏好模式。第二,我们的模式不仅从预测准确性的角度评价,而且从最终任务质量的角度评价。我们使用线性基于方案编制的派任优化公式,我们展示了我们的方法如何更好地探索未加扩大的任务空间,以最大限度地实现分配给审查者的文件的总体亲近性。我们展示了2007年会议的结果。我们展示了2007年IEEER会议对IEA的审查结果。