Conference paper assignment, i.e., the task of assigning paper submissions to reviewers, presents multi-faceted issues for recommender systems research. Besides the traditional goal of predicting `who likes what?', a conference management system must take into account aspects such as: reviewer capacity constraints, adequate numbers of reviews for papers, expertise modeling, conflicts of interest, and an overall distribution of assignments that balances reviewer preferences with conference objectives. Among these, issues of modeling preferences and tastes in reviewing have traditionally been studied separately from the optimization of paper-reviewer assignment. In this paper, we present an integrated study of both these aspects. First, due to the paucity of data per reviewer or per paper (relative to other recommender systems applications) we show how we can integrate multiple sources of information to learn paper-reviewer preference models. Second, our models are evaluated not just in terms of prediction accuracy but in terms of the end-assignment quality. Using a linear programming-based assignment optimization formulation, we show how our approach better explores the space of unsupplied assignments to maximize the overall affinities of papers assigned to reviewers. We demonstrate our results on real reviewer preference data from the IEEE ICDM 2007 conference.


翻译:除了预测`谁喜欢什么?'的传统目标外,会议管理系统还必须考虑到以下各方面:审查者能力限制、对文件的足够审查数量、专门知识模型、利益冲突以及兼顾审查者的偏好与会议目标的任务总体分配等。其中,对审查的优惠和品味的建模问题传统上与优化文件审查员的任务分开研究。我们在本文件中对这两个方面进行了综合研究。首先,由于每个审查者或每份文件(相对于其他建议系统应用)缺乏数据,我们展示了我们如何将多种信息来源综合起来学习文件审查者偏好模式。第二,我们的模式不仅从预测准确性的角度评价,而且从最终任务质量的角度评价。我们使用线性基于方案编制的派任优化公式,我们展示了我们的方法如何更好地探索未加扩大的任务空间,以最大限度地实现分配给审查者的文件的总体亲近性。我们展示了2007年会议的结果。我们展示了2007年IEEER会议对IEA的审查结果。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员