The problem of video inter-frame interpolation is an essential task in the field of image processing. Correctly increasing the number of frames in the recording while maintaining smooth movement allows to improve the quality of played video sequence, enables more effective compression and creating a slow-motion recording. This paper proposes the FastRIFE algorithm, which is some speed improvement of the RIFE (Real-Time Intermediate Flow Estimation) model. The novel method was examined and compared with other recently published algorithms. All source codes are available at https://gitlab.com/malwinq/interpolation-of-images-for-slow-motion-videos


翻译:图像处理领域的一个重要任务就是视频间跨框架的内插问题。正确增加录制框数,同时保持平稳移动,可以提高播放视频序列的质量,能够更有效地压缩和创建慢动记录。本文建议采用快速的FastRIFE算法,这是RIFE(实时中间流动估计)模型的某种速度改进。对新颖方法进行了审查,并与最近公布的其他算法进行了比较。所有源代码都可在https://gitlab.com/malwinq/interpologation-of-images-f-slow-movement-views查阅。所有源代码都可以在https://gitlab.com/malwinq/interpologation-images-f-images-f-slow-movey-views查阅。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员