Neural networks are notoriously vulnerable to adversarial attacks -- small imperceptible perturbations that can change the network's output drastically. In the reverse direction, there may exist large, meaningful perturbations that leave the network's decision unchanged (excessive invariance, nonivertibility). We study the latter phenomenon in two contexts: (a) discrete-time dynamical system identification, as well as (b) calibration of the output of one neural network to the output of another (neural network matching). For ReLU networks and $L_p$ norms ($p=1,2,\infty$), we formulate these optimization problems as mixed-integer programs (MIPs) that apply to neural network approximators of dynamical systems. We also discuss the applicability of our results to invertibility certification in transformations between neural networks (e.g. at different levels of pruning).
翻译:神经网络臭名昭著地容易受到对抗性攻击 -- -- 小型不易察觉的扰动,可以大幅改变网络的输出。在相反的方向,可能存在大量有意义的扰动,使得网络的决定保持不变(过度的无差异性,不可倒置 ) 。我们从两种角度研究后一种现象:(a) 离散时间动态系统识别,以及(b) 将一个神经网络的输出与另一个神经网络的输出(神经网络匹配)校准。对于ReLU网络和$L_p$规范(p=1,2,\inty$),我们将这些优化问题作为混合内插程序(MIPs)来制定,适用于动态系统的神经网络的神经网络近身。我们还讨论了我们的结果在神经网络之间的转换(例如在不同水平的运行)中可忽略性认证的适用性。