Neural fields excel at representing continuous visual signals but typically operate at a single, fixed resolution. We present a simple yet powerful method to optimize neural fields that can be prefiltered in a single forward pass. Key innovations and features include: (1) We perform convolutional filtering in the input domain by analytically scaling Fourier feature embeddings with the filter's frequency response. (2) This closed-form modulation generalizes beyond Gaussian filtering and supports other parametric filters (Box and Lanczos) that are unseen at training time. (3) We train the neural field using single-sample Monte Carlo estimates of the filtered signal. Our method is fast during both training and inference, and imposes no additional constraints on the network architecture. We show quantitative and qualitative improvements over existing methods for neural-field filtering.


翻译:神经场在表示连续视觉信号方面表现出色,但通常仅在单一固定分辨率下运行。我们提出了一种简单而强大的方法来优化神经场,使其能够在单次前向传播中完成预滤波。关键创新与特性包括:(1) 我们通过在输入域中进行卷积滤波,利用滤波器的频率响应对傅里叶特征嵌入进行解析缩放。(2) 这种闭式调制方法不仅适用于高斯滤波,还可泛化至训练时未见的其他参数化滤波器(如Box滤波器和Lanczos滤波器)。(3) 我们使用滤波信号的单样本蒙特卡洛估计来训练神经场。该方法在训练和推理阶段均具有高效性,且对网络架构不施加额外约束。实验表明,本方法在神经场滤波任务中,在定量与定性评估上均优于现有方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
49+阅读 · 2021年5月9日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
49+阅读 · 2021年5月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员