The increasing amount of data and the growing complexity of problems has resulted in an ever-growing reliance on cloud computing. However, many applications, most notably in healthcare, finance or defense, demand security and privacy which today's solutions cannot fully address. Fully homomorphic encryption (FHE) elevates the bar of today's solutions by adding confidentiality of data during processing. It allows computation on fully encrypted data without the need for decryption, thus fully preserving privacy. To enable processing encrypted data at usable levels of classic security, e.g., 128-bit, the encryption procedure introduces noticeable data size expansion - the ciphertext is much bigger than the native aggregate of native data types. In this paper, we present MemFHE which is the first accelerator of both client and server for the latest Ring-GSW (Gentry, Sahai, and Waters) based homomorphic encryption schemes using Processing In Memory (PIM). PIM alleviates the data movement issues with large FHE encrypted data, while providing in-situ execution and extensive parallelism needed for FHE's polynomial operations. While the client-PIM can homomorphically encrypt and decrypt data, the server-PIM can process homomorphically encrypted data without decryption. MemFHE's server-PIM is pipelined and is designed to provide flexible bootstrapping, allowing two encryption techniques and various FHE security-levels based on the application requirements. We evaluate MemFHE for various security-levels and compare it with state-of-the-art CPU implementations for Ring-GSW based FHE. MemFHE is up to 20kx (265x) faster than CPU (GPU) for FHE arithmetic operations and provides on average 2007x higher throughput than the state-of-the-art while implementing neural networks with FHE.


翻译:数据数量不断增加,问题日趋复杂,导致对云计算的依赖日益增长。然而,许多应用程序,特别是保健、金融或国防、需求安全和隐私方面的应用程序,如今解决方案无法完全解决。完全同质加密(FHE)通过在处理过程中添加数据保密性来提升今天解决方案的条块。它允许在完全加密数据的基础上进行计算,而无需解密,从而充分保护隐私。为了能够在传统安全可用级别(例如128比特)处理加密数据,加密程序引入了显著的数据规模扩大――密码文本比本地数据类型2007年的本地汇总要大得多。在本文件中,我们介绍了MemFHE,这是最新的Ring-GSW(Gentry、Sahi和Waters)的客户和服务器的第一个加速器。它用处理器解密(FHE-SUP)系统加密数据系统(FHIF-SOL-Syal-Syal-FSyal-Syal-Syal-Syal-Syal-Syal-Syal-Syal-Systemal-Syal-Sy-Syal-Syal-Syal-Sy-Sy-Syal-Syal-Syal-Sy-Syal-Syal-Sy-Sy-Syal-Sy-Sy-Sy-Sy-Sy-Sy-Sy-Sy-S-Sy-S-Sy-Sy-Sy-Sy-Sy-Syal-h-Sy-Sy-Sy-h-Sy-Sy-S-S-S-S-Sy-Sy-Sy-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Sy-S-S-S-S-S-Sy-Sy-Sy-Sy-Sy-Sy-Sy-S-S-Sy-Sy-Sy-S-S-S-S-S-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员