Uses of pejorative expressions can be benign or actively empowering. When models for abuse detection misclassify these expressions as derogatory, they inadvertently censor productive conversations held by marginalized groups. One way to engage with non-dominant perspectives is to add context around conversations. Previous research has leveraged user- and thread-level features, but it often neglects the spaces within which productive conversations take place. Our paper highlights how community context can improve classification outcomes in abusive language detection. We make two main contributions to this end. First, we demonstrate that online communities cluster by the nature of their support towards victims of abuse. Second, we establish how community context improves accuracy and reduces the false positive rates of state-of-the-art abusive language classifiers. These findings suggest a promising direction for context-aware models in abusive language research.
翻译:贬义表达方式的使用可以是良性的,也可以是积极的赋权。当滥用检测模型将这些表达方式错误地归类为贬义性时,它们无意中审查边缘化群体进行的生产性对话。 与非主导性观点接触的一种方式是增加对话的背景。 以前的研究利用了用户和线级特征,但往往忽视了进行生产性对话的空间。 我们的文件强调了社区背景如何改善滥用语言检测的分类结果。 我们为此作出了两个主要贡献。 首先,我们证明在线社区根据其对虐待受害者支持的性质而集中在一起。 其次,我们确定社区背景如何提高准确性,并降低滥用语言的老化语言分类者的假正率。 这些研究结果表明,在滥用语言研究中,对适应性模式有希望的方向。