There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
翻译:现代葡萄园的熟练劳动力严重短缺。 Vinum 项目正在开发一个移动机器人解决方案,通过葡萄园自主导航冬季葡萄园。 这需要机器人自主导航葡萄园。 Vinum 项目正在使用四重机器人HyQReal。 本文介绍了一个四重机器人通过葡萄园自主移动的建筑, 其方法是识别和接近葡萄树进行裁剪。 更高级别的控制是州级机器在寻找目的地位置、 自主导航这些位置、 停止机器人完成一项任务之间转换。 目的地点是通过使用基于磁区、 磁区、 革命神经网络( Mask- RCNNN) 的例分解来确定葡萄树干。 这些检测是通过过滤器发送的, 以避免冗余, 并消除噪音探测。 这些特征的结合是拟议建筑的基础。