Deep learning relies on the availability of a large corpus of data (labeled or unlabeled). Thus, one challenging unsettled question is: how to train a deep network on a relatively small dataset? To tackle this question, we propose an evolution-inspired training approach to boost performance on relatively small datasets. The knowledge evolution (KE) approach splits a deep network into two hypotheses: the fit-hypothesis and the reset-hypothesis. We iteratively evolve the knowledge inside the fit-hypothesis by perturbing the reset-hypothesis for multiple generations. This approach not only boosts performance, but also learns a slim network with a smaller inference cost. KE integrates seamlessly with both vanilla and residual convolutional networks. KE reduces both overfitting and the burden for data collection. We evaluate KE on various network architectures and loss functions. We evaluate KE using relatively small datasets (e.g., CUB-200) and randomly initialized deep networks. KE achieves an absolute 21% improvement margin on a state-of-the-art baseline. This performance improvement is accompanied by a relative 73% reduction in inference cost. KE achieves state-of-the-art results on classification and metric learning benchmarks. Code available at http://bit.ly/3uLgwYb
翻译:深层学习取决于大量数据(标签或未标签)的可得性。因此,一个挑战性未解决的问题是:如何在相对较小的数据集上训练深网络?为了解决这一问题,我们建议采用进化引导培训方法,提高相对较小的数据集的性能。知识进化(KE)方法将深网络分为两个假设:相配假说和重设假说功能。我们通过对多代人重置合制的网络进行渗透,反复地在相配中发展知识。这个方法不仅能提高性能,而且能以较低的推论成本学习一个微小的网络。KE与Vanilla和剩余革命网络进行无缝的整合。KE可以减少过配和数据收集的负担。我们对各种网络架构和损失功能的KEE进行了评估。我们利用相对小的数据集(如 CUB-200)和随机初始化的深层网络来评估KE。KE不仅能提高性能,而且还能以较低的推算成本来学习一个微的网络。 KEE在现有的州/RB基准级的改进幅度中,这是用来降低成本。