This paper presents a lightweight, open-source and high-performance python package for solving peridynamics problems in solid mechanics. The development of this solver is motivated by the need for fast analysis tools to achieve the large number of simulations required for `outer-loop' applications, including sensitivity analysis, uncertainty quantification and optimisation. Our python software toolbox utilises the heterogeneous nature of OpenCL so that it can be executed on any platform with CPU or GPU cores. We illustrate the package use through a range of industrially motivated examples, which should enable other researchers to build on and extend the solver for use in their own applications. Step improvements in execution speed and functionality over existing techniques are presented. A comparison between this solver and an existing OpenCL implementation in the literature is presented, tested on benchmarks with hundreds of thousands to tens of millions of nodes. We demonstrate the scalability of the solver on the GeForce RTX 2080 TiGPU from NVIDIA, and the memory-bound limitations are analysed. In all test cases, the implementation is between 1.4 and 10.0 times faster than a similar existing GPU implementation in the literature. In particular, this improvement has been achieved by utilising local memory on the GPU.


翻译:本文展示了用于解决固体机械中近效动力学问题的轻量、开放源码和高性能保温套件。开发该求解器的动机是需要快速分析工具,以实现“外环”应用所需的大量模拟,包括敏感性分析、不确定性量化和优化。我们的 Python软件工具箱利用了OpenCL的多样化性质,以便能够用CPU或GPU核心在任何平台上执行。我们通过一系列具有工业动机的例子来说明该套件的用途,这些例子应该使其他研究人员能够利用和扩展求解器,供他们自己应用。介绍了对现有技术的执行速度和功能的逐步改进。介绍了该求解码器与文献中现有的OpenCL执行速度和功能的比较,以数十万至数千万个节点的基准测试。我们展示了从VIVDIA的GForce RTX 2080 TiGPU上解解解解的可扩缩性,并分析了内存限制。在所有测试案例中,实施该软件的实施速度在1.4至10.0倍之间。

0
下载
关闭预览

相关内容

OpenCL(Open Computing Language,开放计算语言)是一个为异构平台编写程序的框架,此异构平台可由 CPU,GPU 或其他类型的处理器组成。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年4月12日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Arxiv
0+阅读 · 2021年9月25日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员